

TETRA TECH, INC.

4213 State St., Suite 205 Santa Barbara, CA 93101 Telephone (805) 681-3100 FAX (805) 631-3108

Vandenberg Air Force Base Project:

Log of Well No. 8-MW-4

Location: OU5, Site 8, SLC-4E, approx. 15 ft west of the southwest

corner of the retention basin.

Date Started: 3/17/94 Completed: 3/22/94 Logged By: Rohrer/Bonebrake Checked By: R. Horwath, RG

Drilled By: A. Simones, S/G Testing

Drilling Equipment: CME 75, 8/10" HSA

Sampling Equipment: 2" ID Split-Spoon

GS Fley : 477 1 ft above MSI

4" PVC Blank Casing:	from	0	ft bgs to	95.7 ft bgs
.010 " Screened Casing:	from	96.5	ft bgs to	106.5 ft bgs
Bentonite/Cement Grout:	from	1.5	ft bgs to	88.5 ft bgs
Bentonite Transition Seal:	from	88.5	ft bgs to	91.5 ft bgs
2/12 Sand Filter Pack:	from	91.5	ft bgs to	107.5 ft bgs

GS Elev.:	477.1	ft above MSL	TD: 107.5 ft bgs	TOC	Elev.:				ft a	bove M	SL		
Depth (ft bgs)		DESCRIPT			aphic/ SCS	Cons	Well struct	ion -	Sample	Counts Per 6"	Percent Recovery	PID(ppm) Amb/Smp	REMARKS
-	silty sand t	brown (7.4YR 4/3), fi	, dry, very dense, fill. ne grained, well sorted, iron staining, medium		SW SM		***************************************			7 11 13 15	54	1.9/2.7	Start 0900. Class II Baserock to 1.0' bgs.
-	sorted, sub	yellowish brown (10Y) pangular to rounded, so htly moist, Orcutt For	R 5/4), fine grained, well light iron staining, medium mation.		SM -		// X///			4 8 10	63	1.9/2.5	
5					·		X111X4111X			12 3 4 8 14	100	1.9/2.7	Sample V8MW4-4 sent for chemical tests. Sample V8MW4-6M; sent for chemical tests.
10										3 6 6	72	1.9/2.4	icsis.
15										5 8 14	100	1.9/2.6	
-							X///X///X///X			`			

105.0 ft bgs 👱 Groundwater depth during drilling

4/12/94

TC Number: 7301-10

TETRA TECH, INC.

Continued Next Page

Page 1 of 5

TETRA TECH, INC.

4213 State St., Suite 205 Santa Barbara, CA 93101 Telephone (805) 681-3100 FAX (805) 631-3108 Project: Vandenberg Air Force Base Log of Well No. 8-MW-4

Location: OU5, Site 8, SLC-4E, approx. 15 ft west of the southwest corner of the retention basin.

Well struction Particular P	KS
9 100 0.9/1.8 17 24 100 0.9/1.8 19 100 1.1/1.7 Sample V8MW and V8MW4-2 for chemical te	
19 and V8MW4-2 for chemical te	
K///V V I (replicates)	6 sent
15 21 33 100 1.1/2.1	
11 25 31 100 1.1/1.8	
10 24 37	
9 22 33 100 0.9/1.6 Samples V8MW and V8PPS1 sephysical tests (replicates).	74-40 nt for
	15 100 1.1/2.1 for chemical tereplicates). 11 100 1.1/1.8 25 31 100 1.0/4.0 24 37 100 0.9/1.6 Samples V8MW and V8PPS1 set physical tests

TETRA TECH, INC.

4213 State St., Suite 205 Santa Barbara, CA 93101 Telephone (805) 681-3100 FAX (805) 631-3108 Project: Vandenberg Air Force Base Log of Well No. 8-MW-4

Location: OU5, Site 8, SLC-4E, approx. 15 ft west of the southwest corner of the retention basin.

		corner of the retention basin.							
Depth (ft bgs)	DESCRIPTION	Graphic/ USCS	Well Construction	Sample	Blow Counts Per 6"	Percent Recovery	PID(ppm) Amb/Smp	REMARKS	
	sand yellowish brown (10YR 5/6), fine to trace medium grained, trace silt, well sorted, subrounded to rounded, very dense, slightly moist, Orcutt Formation.	SP			11 23 33	100	1.0/5.3	Sample V8MW4-45 sent for chemical tests.	
50					12 24 32	100	0.2/1.2		
55	Same, except yellowish brown (10YR 5/4), fine to medium grained, minor silt, slightly moist to moist.				8 19 30	100	0.7/2.0		
- 65	silty sand yellowish brown (10YR 5/4), fine to medium grained, moderately sorted, subrounded to rounded, slight iron staining, very dense, slightly moist to moist, Orcutt Formation.	SM			11 24 36	100		Sample V8MW4-60 sent for chemical tests.	
	sand yellowish brown (10YR 5/4), fine to medium grained, minor silt, moderately sorted, subrounded to rounded, slight iron staining, very dense, slightly moist to moist, Orcutt Formation.	SP-SM			14 26 39	100	0.6/1.4		

TETRA TECH, INC.

4213 State St., Suite 205 Santa Barbara, CA 93101 Telephone (805) 681-3100 FAX (805) 631-3108 Project: Vandenberg Air Force Base Log of Well No. 8-MW-4

Location: OU5, Site 8, SLC-4E, approx. 15 ft west of the southwest corner of the retention basin.

	Corner of the retention bashi.				
Depth (ft bgs)	DESCRIPTION	Graphic/ USCS	Mell Country Country Per 6.	Percent Recovery PID(ppm) Amb/Smp	REMARKS
-	sand yellowish brown (10YR 5/4), fine to medium grained, minor silt, subrounded to rounded, slight iron staining, very dense, slightly moist to moist, Orcutt Formation.	SP-SM	11 26 34	100 0.8/1.4	
75	Same, except fine to trace medium grained, no iron staining.		10 28 39	100 0.9/1.5	
80	silty sand yellowish brown (10YR 5/6), fine to medium grained, moderately sorted, subrounded to rounded, slight iron staining, very dense, moist, Orcutt Formation.	SM	12 30 40	100 0.6/1.7	
85_	sand yellowish brown (10YR 5/6), fine to trace medium grained, minor silt, well sorted, subrounded to rounded, slight iron staining, very dense, moist, Orcutt Formation.	SP-SM	15 31 50/5"	100 0.7/1.4	Sample V8MW4-85 sent for chemical tests.
90 _	Same, except fine to medium grained, no staining.		16 32 46	100 0.8/1.6	

TETRA TECH, INC.

4213 State St., Suite 205 Santa Barbara, CA 93101 Telephone (805) 681-3100 FAX (805) 631-3108

Project: Vandenberg Air Force Base 8-MW-4

Log of Well No.

Location: OU5, Site 8, SLC-4E, approx. 15 ft west of the southwest corner of the retention basin.

Page **5** of **5**

	FAX (600) 631-3106	corner of the retention basin.						
Depth (ft bgs)	DESCRIPTION	Graphic/ USCS	Well Construction	Sample		Percent Recovery	0.7/1.9 Amb/Smp	REMARKS
1 1	sand yellowish brown (10YR 5/6), fine to medium grained, minor silt, subrounded to rounded, very dense, moist, Orcutt Formation.	SP V			13 25 45	100	0.7/1.9	Start of PVC vee-wire screen.
100	silty sand yellowish brown (10YR 5/4), fine to medium grained, minor clay, well sorted, subrounded to rounded, low plasticity, dense, very moist, Orcutt Formation.	SM-SC			14 19 27	100	0.4/2.2	Sample V8MW4-100 sent for chemical tests.
105	Same, except fine to coarse grained, moderately sorted, no plasticity, medium dense, wet, Orcutt Formation.	Y			8 12 14	100		Sample V8MW4-105 sent for physical tests.
110	silty clay pale olive (5Y 6/3), medium plasticity, very stiff, very moist, possible weathered Sisquoc Formation.	CL						TD 8" Auger = 106.8'. TD 10.5" Auger = 107.5'. End 1530.
115								
_								

TETRA TECH, INC.